Ten Technological Concepts Compressing the Analytical Timeline

Today’s difficult economic climate continues to cause increased competition for all organizations. Shrinking budgets are placing government departments and agencies under more pressure to increase operating efficiencies and cost-effectiveness of programs and technologies. Across industry, fragile markets have caused organizations to consider the need for every project, person, and printer to reduce operating costs. In the non-profit sector, slimming funding streams have caused an increased pressure to demonstrate value through concrete, measurable results.

In order to stay competitive within their particular domains, markets, and user communities – and to ultimately achieve growth and sustainability in any economic climate – all organizations must find ways to increase operating efficiencies, eliminate programmatic redundancies, and produce measurable results. Lucky for these organizations, several technological concepts have emerged over the past decade which help support these practices. In that regard, the acknowledgement, understanding, and implementation of these concepts across organizational units, programs, and processes will compress the analytical timeline and allow organizations to learn, control, adapt, and anticipate over time.

Here’s a quick look at some of the technological concepts/trends that are compressing the analytical timeline, allowing organizations to act on insights more quickly, more effectively, and more accurately:

  1. Data Collection Mechanisms – It’s not just about collecting more data, although volume (in many cases) helps. It is about collecting more types of data (image, audio, video, open source media, social media) and collecting more tactical data. The growth of the mobile and tablet markets, the ease-of-use of such devices and their decreasing costs, and the expansion of mobile network infrastructure around the world are helping organizations collect more diverse, tactical, and (ultimately) valuable data.
  2. Data Cleansing/Processing – Rather than ignoring unstructured data, we are beginning to embrace it. Many COTS, GOTS, and even open source technologies exist that cleanse and process unstructured data to ensure it can be used to support relevant use cases. Where unstructured data was formerly omitted from the analytical landscape, these technologies are now bringing new value and context to insights and decisions. Within this I want to also add the data storage/warehousing and processing capabilities that support big data analytics and data mining, which provides a quicker means by which the vast amount of data can be combed for relevant patterns and insights.
  3. Logical Data Structures – It seems we are finally learning that a little thought and planning up front does wonders for the types of analysis needed to support operations research, performance measurement, marketing, and other organizational practices. By building logical data structures, we can quantify things otherwise unquantifiable and ultimately make timely, informed decisions otherwise made by intuition alone.
  4. Data Standards/Models – In conjunction with building supportive, internal data structures, we are beginning to understand how data models within domains, across communities of interest, and for specific problem sets can do wonders for our analytical practices. By developing and/or adopting a standard, we can bring consistency to these analytical practices over time, even through personnel changes. No more one-off studies/reports, but rather repeatable and communicable analysis.
  5. Data Source Registries/Catalogs – It is slowly being understood that ubiquitous access to raw data sets is far from a reality. However, organizations are beginning to realize that data source catalogs (registries) across organizational units and/or communities of interest is a step that can quickly facilitate more effective data sharing practices. Rather than focus on the exposure of raw data, the data source catalog first involves the exposure of data source metadata – information about the data, but not the data itself. This data sharing approach is more strongly rooted in trust and visibility and, ultimately, can provide a platform by which analysts can gain quicker access to more relevant data.
  6. Social Networks – The social network movement has done many things to compress the analytical timeline, to include, but not limited to: driving more collaboration and interaction between data owners, analysts, end users, and ordinary people; driving a new means by which more tactical data can be accessed and collected; and facilitating the development of new platforms, applications, and technologies to glean insights from data.
  7. Identity Management, Access Control, & Cyber Security – Knocking down stovepipes can support better access to data which in turn can support less time collecting data and more time analyzing it. However, stovepipes provide organizations with another layer of security to prevent data breaches. Despite this contradiction, better identity management, access control, and security technologies are being developed to maintain a high level of control while still ensuring users can more easily access data traditionally hidden within stovepipes. In turn, the time spent accessing and integrating data is decreased and individuals can spend more time analyzing disparate data and delivering quality insights.
  8. Cloud Computing – The movement of information systems and applications to the cloud is transforming the analyst from being a thick-client-loving info hog to being a platform-agnostic, collaborative participant. With more data and tools exposed to individuals, no longer constrained by a single hard drive or device, analysts can more effectively and efficiently access, collect, integrate, visualize, analyze, share, and report on data and insights.
  9. Network Infrastructure – The expansion of existing connected and wireless networks as well as the development of new, quicker, more accessible, and more secure networks will continue to compress the time it takes for analysts to provide valuable insights.
  10. Customizable & User-Defined Interactions – Allowing individuals to define how they wish to visualize, analyze, and interact with relevant data provides analysts with the ability to focus on developing solutions rather than setting up problems. The “user-defined” movement provides flexibility and adaptability to the individual and allows a wider set of individuals to become analysts by owning their own workspaces and interactions. It also provides an interactive medium through which results can be presented, making the reporting and dissemination process interactive rather than a drawn out one-way street.

I do want to note that this list is by no means comprehensive. Even more importantly, it only focuses on technological concepts and does not address the numerous cultural and political factors that affect the analytical timeline. Although technology shall continue to be a major focus area in supporting quicker and more effective analytical practices, it is the cultural and political aspects that will be more difficult to overcome and their interdependence on the technological aspects should never be overlooked.